martes, 28 de febrero de 2017

xDSL: Introducción


INTRODUCCIÓN



El acrónimo DSL significa "línea de abonado digital". Las aplicaciones de DSL implican el transporte de datos, voz y, más recientemente, video, de alta velocidad a abonados residenciales y comerciales. DSL en general describe la tecnología, mientras que xDSL representa las variedades individuales de la tecnología DSL.

lunes, 27 de febrero de 2017

xDSL: Funcionamiento


Funcionamiento



El acceso xDSL se basa en la conversión del par de cobre de la red telefónica básica en una línea digital de alta velocidad capaz de soportar servicios de banda ancha además del envío simultáneo de voz. Para lograr esto se emplean tres canales independientes:
  • Dos canales de alta velocidad (uno de recepción de datos y otro de envío de datos).
  • Otro canal para la transmisión de voz
Cada uno de ellos ocupa una banda de frecuencia diferente, de manera que no interfieran entre sí. El canal de voz queda ubicado entre los 200Hz y los 3,4KHz se transmite en banda base, como el servicio telefónico tradicional, mientras que los canales de datos quedan aproximadamente entre los 24KHz y los 1,1MHz, distribuyéndose de forma variable entre el canal de subida y el de bajada según el tipo de tecnología xDSL empleada. Se transmiten mediante múltiples portadoras.
Para poder ofrecer servicios de voz compatibles con los terminales telefónicos convencionales, los usuarios deben disponer de unos dispositivos denominados splitter o microfiltros de paso bajo que se sitúan entre la toma de red telefónica y los equipos terminales (módem y teléfono) para filtrar la voz de los distintos canales de datos.
Por su parte, los equipos de red del operador (típicamente, la central telefónica local) deben disponer de los denominados DSLAM (“Digital Subscriber Line Access Multiplexer”), que contienen un conjunto de tarjetas con varios módems de central de un número de usuarios, de manera que se concentre y se enrute el tráfico de los enlaces xDSL hacia una red de área extensa.

domingo, 26 de febrero de 2017

xDSL: Tipos


Tipos de xDSL



Existe una variedad de tecnologías xDSL que se caracterizan por su simetría/asimetría en los canales de subida y bajada de datos, por las tasas de transmisión alcanzadas y, lo que guarda una relación inversa con esto último, la longitud máxima del bucle de abonado.
En España, la variedad de xDSL más extendida es el ADSL (“Asymmetric Digital Subscriber Line”), una versión con caudales de transmisión diferentes en subida (sentido usuario-red) y bajada de datos (sentido red-usuario). Los límites teóricos de esta configuración son de unos 24 Mbit/s en sentido red-usuario y hasta 1 Mbit/s en sentido usuario-red, para bucles de abonado cortos.
Algunas otras tecnologías xDSL son:
  • HDSL (“High Data Rate Digital Subscriber Line”), con altas tasas de transmisión.
  • SDSL (“Symmetric Digital Subscriber Line”), version estandarizada de HDSL.
  • IDSL (“ISDN Digital Subscriber Line”), xDSL sobre redes RDSI.
  • RADSL (“Rate-Adaptive Digital Subscriber Line”), con tasas de transmisión adaptativas.
  • VDSL y VDSL2 (“Very High Speed Digital Subscriber Line”), versiones que permiten altas tasas de transmisión en tramos cortos de bucle de abonado, lo que las hace idóneas para cubrir el último tramo en redes de fibra óptica hasta la manzana (FTTC).

sábado, 25 de febrero de 2017

RDSI: Introducción


Introducción

La RDSI ha sido una de las tecnologías más prometedoras y populares de la historia de las telecomunicaciones, pero por muchas razones en especial los altos costes y la irrupción del ADSL, se acabó convirtiendo en uno de los más sonados fracasos tecnológicos. RDSI sigue siendo empleada en la actualidad en varias empresas como alternativa de respaldo para algunos servicios de datos y para soporte de videoconferencias. Su adopción masiva nunca llegó a producirse, ADSL llegó más tarde, pero pegó mucho más fuerte.
La Red Digital de Servicios Integrados (RDSI) es una red que procede por evolución de la Red Telefónica Básica (RTB) o Red Telefónica Conmutada (RTC) convencional, que facilita conexiones digitales extremo a extremo entre los terminales conectados a ella (teléfono, fax, ordenador, etc.) para proporcionar una amplia gama de servicios, tanto de voz como de datos, a la que los usuarios acceden a través de un conjunto de interfaces normalizadas definidas por el ITU-T (antiguo CCITT). Esta red coexiste con las redes convencionales de telefonía y datos e incorpora elementos de interfuncionamiento para su interconexión con dichas redes, tendiendo a convertirse en una única y universal red de telecomunicaciones.
En los primeros años de la RTB, la red era completamente analógica y se utilizaba multiplexación por división en frecuencia para transportar un largo número de canales telefónicos sobre un único cable coaxial. La actual RTB es una Red Digital Integrada (RDI), es decir, una red telefónica en la que los medios de transmisión y conmutación son digitales, a excepción del bucle de abonado. Para digitalizar la señal telefónica, ésta es muestreada a una frecuencia de 3,1 KHz en la banda vocal de 300-3.400 Hz, cuantificada, codificada y finalmente transmitida a una tasa binaria de 64 Kbps. Mediante la Modulación de Impulsos Codificados (MIC) fue posible la utilización múltiple de una única línea por medio de la multiplexación por división en el tiempo. La RDI utiliza también técnicas de procesamiento de la información tales como la cancelación de eco y la atenuación de la señal. En la RDI se integran servicios de voz y datos, y se utilizan técnicas de señalización por canal común.

viernes, 24 de febrero de 2017

RDSI: Características


Características

La RDSI es una RDI, en la que el bucle de abonado es digital. Las principales características de la RDSI son:
  • Acceso a través de interfaces normalizados.
  • Conectividad digital extremo a extremo.
  • Conexiones por conmutación de circuitos a n x 64 Kbps (n = 1, 2,…, 30).
  • Incorporación de elementos de conmutación de paquetes.
  • Utilización de vías diferentes para el envío de la señalización y la transferencia de información, lo que confiere al sistema en su conjunto de una gran flexibilidad y potencia. La señalización entre centrales RDSI es conforme con el Sistema de Señalización por Canal Común Número 7.
  • Señalización entre el usuario y la red según el Protocolo de Canal D.
  • Amplia gama de servicios.

jueves, 23 de febrero de 2017

RDSI: Estructura


Estructura


Los principales elementos que componen la estructura de la RDSI son los accesos digitales de abonado, la red de tránsito y los nodos especializados.
Los accesos digitales de abonado permiten conectar los terminales del abonado a la red a través de configuraciones de acceso normalizadas. Los accesos digitales de abonado están constituidos por:
  • Los propios locales del abonado con equipos terminales y una red interior que interconecta estos terminales con la línea de transmisión, que se conocen por instalaciones del abonado.
  • Los equipos y líneas de transmisión digital que unen las instalaciones con la central, que se conocen por red local.
La red de tránsito interconecta las centrales locales entre sí o con los nodos especializados de la red. La red de tránsito está constituida por:
  • Sistemas digitales de transmisión.
  • Centrales digitales de conmutación de circuitos, con elementos adicionales de conmutación de paquetes.
  • Sistemas de señalización por canal común.
Los nodos especializados son de diversos tipos:
  • Nodos para servicios centralizados y de valor añadido.
  • Nodos de interconexión con otras redes.
  • Nodos de operadoras.
  • Nodos de explotación de la red.

miércoles, 22 de febrero de 2017

RDSI: Configuración de Referencia


Configuración de Referencia




Configuración de referencia del acceso de usuario RDSI

Los equipos o pares de equipos denominados agrupaciones funcionales son:
  • Equipo Terminal 1 (ET1). Es el equipo terminal diseñado específicamente para conectarse directamente a la RDSI sin necesidad de equipo adicional alguno. Por ejemplo, teléfonos RDSI, faxes Grupo 4, tarjetas de comunicaciones RDSI para PC, etc. Se conecta a la RDSI en el punto de referencia S.
  • Equipo Terminal 2 (ET2). Representa cualquier terminal que no se diseñó originalmente para ser utilizado en la RDSI y que, por lo tanto, no se puede conectar directamente a la interfaz S. Por ejemplo, módems, teléfonos analógicos, fax Grupo 3, terminales modo paquete, etc. Su conexión se efectúa en el punto de referencia R. Los puntos de referencia R designan cualquiera de las interfaces de conexión conocidos, por ejemplo, V.28, V.35, X.21, analógico, etc.
  • Adaptador de Terminal (AT). Es el equipo por medio del cual podemos utilizar en la RDSI los terminales ET2, es decir, implementa el hardware y software necesario para que el ET2 cumpla con los requerimientos que se le exigen a una interfaz estándar RDSI. Se encarga, por lo tanto, de convertir el protocolo de señalización y convertir los datos. Ejemplos de adaptadores serían, adaptadores de interfaz analógico a 2 hilos AT a/b, adaptadores de terminales modo paquete (tarjeta de comunicaciones X.25) AT X.25, etc. El AT proporciona una interfaz de conexión al ET2 mediante el punto de referencia R y se conecta a la RDSI en el punto de referencia S.
  • Terminación de Red 2 (TR2). Es un equipo que realiza funciones de conmutación, concentración y control en las instalaciones del cliente. Podría ser, por ejemplo, una centralita digital, una red de área local o un sistema multilínea. El TR2 se conectará a la RDSI en el punto de referencia T y proporciona al usuario el punto S necesario para conectar agrupaciones del tipo ET1 o AT. No es imprescindible la existencia de TR2 en todas las instalaciones de usuario, en cuyo caso, los puntos de referencia T y S son coincidentes; se habla, por lo tanto, de punto de referencia S/T, o bien abreviadamente, del punto de referencia S.
  • Terminación de Red 1 (TR1). Es el elemento activo que realiza la adaptación entre la interfaz hacia el terminal o el adaptador de terminales y la línea de abonado digital. La TR1, además de permitir la interconexión y hacer la conversión de señales entre el bucle de abonado a 2 hilos y el bus pasivo a 4 hilos, proporciona facilidades de mantenimiento y supervisión de los aspectos relacionados con la transmisión. La instalación interior del usuario se conecta al TR1, en el caso más general, en el punto de referencia T. Sin embargo, el caso más habitual es que no exista TR2 y, por lo tanto, el punto de referencia asociado es el S/T. El código de línea de la instalación interior de usuario es único y, por consiguiente, independiente del sistema que provea el acceso a la RDSI. La TR1 se conecta a la red exterior en el denominado punto de referencia U. Este punto de referencia no define una única interfaz, ya que existen dos tipos de interfaces caracterizadas por dos códigos de línea distintos: 4B3T y 2B1Q.
  • Terminación de Línea (TL).  Es el equipo de transmisión situado en la central local y, en cuanto a sus funciones, puede considerarse como el equivalente del TR1. La transmisión entre el TR1 y la TL es completa en las dos direcciones o full-duplex y se realiza sobre un par de hilos trenzados metálicos.
  • Terminación de Central (TC). La TC, que está ubicada en la central local, realiza la conexión de los canales de información con las etapas de conmutación de la central, soporta el procesamiento de la señalización de usuario, controla la activación/desactivación de la línea digital, y realiza el mantenimiento correspondiente del acceso de usuario. En ciertos casos, los equipos de TC y TL están integrados en el mismo equipo físico; por lo cual, el punto de referencia V que separa a ambos, se convierte en un punto de referencia virtual.
Los puntos de referencia son:
  • Punto de referencia R. Representa el punto de conexión de cualquier terminal que soporte una interfaz normalizada no RDSI, como por ejemplo, terminales de modo paquete X.25, terminales con interfaz V.24, o terminales con interfaz analógica a 2 hilos.
  • Punto de referencia S. Se corresponde con la conexión física pasiva de los terminales de abonado a la red RDSI. Es una interfaz a 4 hilos, 2 para transmisión y 2 para recepción.
  • Punto de referencia T. Representa la separación entre las instalaciones de usuario y los equipos de transmisión de línea del proveedor de la RDSI. Posee las mismas características eléctricas y mecánicas que la interfaz S.
  • Punto de referencia U. Representa la línea de transmisión entre las dependencias del abonado y la central RDSI local. Es a 2 hilos y se corresponde físicamente con el bucle de abonado existente en la RTB. No es necesario instalar nueva infraestructura entre las dependencias de los usuarios y las centrales digitales, la infraestructura de telefonía existente es aprovechable, con lo que se facilita técnica y económicamente el despliegue de los accesos RDSI.
  • Punto de referencia V. Representa la frontera entre los elementos de transmisión y los de conmutación dentro de la central local RDSI.

martes, 21 de febrero de 2017

RDSI: Tipos de Acceso


Tipos de Acceso


Por el momento, sólo se han definido dos tipos de accesos en la RDSI de Banda Extrecha (RDSI-BE), el acceso básico y el acceso primario, cuyo concepto está ilustrado en la Figura 2. Se denomina RDSI-BE porque utiliza conexiones de velocidad no superior a los 2 Mbps. La RDSI del futuro o RDSI de Banda Ancha (RDSI-BA), estará soportada por otras tecnologías de conmutación y transmisión más avanzadas (ATM, SDH, DWDM, etc.) que permitirán ofrecer velocidades superiores y una más amplia gama de servicios (vídeo bajo demanda en tiempo real, interconexión de redes de área local, etc.).
Estructura de acceso de la RDSI

Los tipos de canales RDSI que han sido definidos, son:
  • Canal B. Canal a 64 Kbps utilizado para la transmisión de información de usuario (habla digitalizada, datos digitales, etc.).
  • Canal D. Canal a 16 ó 64 Kbps, dependiendo del tipo de acceso, utilizado para transportar la señalización entre la red y el usuario (establecimiento, liberación o modificación de una conexión). El canal D puede ser utilizado también para la transmisión de información de usuario a baja velocidad (mensajes de texto, información sobre telemetría, etc.).
  • Canal H. Canal a velocidades superiores a 64 Kbps utilizado para la transmisión de información de usuario. Existen tres modos distintos de canal H:
  • Canal H0 a 384 Kbps (con una capacidad equivalente a 6 canales a 64 Kbps).
  • Canal H11 a 1.536 Kbps (con una capacidad equivalente a 24 canales a 64 Kbps). Es utilizado en países como Estados Unidos y Japón, donde se manejan transmisiones digitales MIC a 1.544 Kbps.
  • Canal H12 a 1.920 Kbps (con una capacidad equivalente a 30 canales a 64 Kbps). Es utilizado en países donde se manejan transmisiones digitales MIC a 2.048 Kbps, como por ejemplo, en Europa.
El acceso básico RDSI está constituido por 2 canales B y 1 canal D a 16 Kbps (2B+D). La instalación del usuario (punto de referencia S) es a 4 hilos (2 para transmisión y 2 para recepción). Permite la conexión de hasta 8 terminales direccionables independientemente, pudiendo ser utilizados independientemente 2 de ellos (cada uno por un canal B). En el lado de red (punto de referencia U), se utiliza como soporte físico el bucle de abonado existente. Los canales B pueden utilizarse indistintamente para voz y datos, sólo para voz o sólo para datos; el canal D se utiliza para señalización y provisión de servicios suplementarios.
El acceso primario RDSI está constituido por 30 canales B y 1 canal D a 64 Kbps (30B+D). En el lado de red (punto de referencia U), se utiliza una línea digital de 2 Mbps. En la instalación del usuario puede existir un equipo, el TR2, que se encargue de proporcionar los puntos de referencia S (por ejemplo, una centralita conectada a la red mediante un acceso primario, de la que cuelgan extensiones 2B+D). Un acceso primario puede soportar otras combinaciones de canales siempre que las velocidades agregadas no superen los 2 Mbps (por ejemplo, 5H0+D, H12+D, etc.).

lunes, 20 de febrero de 2017

RDSI: Aplicaciones


Aplicaciones


Mediante el empleo de la RDSI, los usuarios podrán acceder a través de terminales específicos a los siguientes servicios finales o teleservicios:
  • Telefonía. Servicio de transmisión de voz similar al de la RTB. No obstante, utilizando un teléfono RDSI se pueden acceder a todas las facilidades y servicios adicionales ofrecidos por las centrales de conmutación digitales (grupo cerrado de usuarios, identificación del número llamante, indicación de llamada en espera, desvío de llamadas, etc.).
  • Telefonía a 7 KHz. Servicio de telefonía de alta calidad y con mejoras en la inteligibilidad exclusivo de la RDSI. Se utiliza un teléfono específico RDSI para telefonía de alta calidad.
  • Fax Grupos 2 y 3. Servicio típico de la RTB en el que el emisor toma una imagen y genera una imagen igual en el receptor. Mientras el fax del Grupo 2 utiliza codificación analógica; el fax del Grupo 3 utiliza codificación digital, aunque para la transmisión, utiliza teléfonos analógicos vía un módem. En la RDSI se utilizan los terminales de fax clásicos de la RTB con un adaptador de terminal AT a/b.
  • Fax Grupo 4. Servicio exclusivo de la RDSI que mejora la calidad de las imágenes y la velocidad de transmisión de los faxes tradicionales. No es posible el interfuncionamiento con la RTB. Mientras que el envío de una imagen tamaño A4 mediante un fax del Grupo 2 supone unos 6 minutos y mediante un fax del Grupo 3 de alrededor de 1 minuto, los del fax del Grupo 3 tardan menos de 10 segundos.
  • Teletex. Servicio de comunicación de texto que puede utilizar varias redes de comunicación, tales como la RTB. Se utilizan los terminales teletex existentes en la actualidad con un adaptador de terminal AT X.25.
  • Videotex. Servicio para la comunicación interactiva con bases de datos remotas que ha sido ofrecido accediendo a través de la RTB. Se utilizan los terminales videotex existentes en la RTB con un adaptador de terminal AT a/b, o bien específicos RDSI.
  • Videotelefonía. Permite transmitir voz y vídeo lento utilizando, bien sólo uno de los canales B o bien ambos.
  • Otros teleservicios, como: telealarma, telecontrol, televigilancia, telepresencia, telemedida, etc. El único condicionante para ofrecer estos y otros servicios es que exista un terminal válido para acceder al mismo con interfaz S o un adaptador de terminal adecuado.

domingo, 19 de febrero de 2017

Cable-Módem: Introducción


Cable-Módem



El cablemódem (cable-módem o cable módem) es un tipo especial de módem diseñado para modular y demodular la señal de datos sobre una infraestructura de televisión por cable (CATV).
En telecomunicaciones, Internet por cable es un tipo de acceso de banda ancha a Internet. Este término Internet por cable se refiere a la distribución del servicio de conectividad a Internet sobre la infraestructura de telecomunicaciones.
Los cablemódems se utilizan principalmente para distribuir el acceso a Internet de banda ancha, aprovechando el ancho de banda que no se utiliza en la red de televisión por cable. Los abonados de un mismo vecindario comparten el ancho de banda proporcionado por una única línea de cable coaxial. Por lo tanto, la velocidad de conexión puede variar dependiendo de cuántos equipos están utilizando el servicio al mismo tiempo.
Los cablemódems deben diferenciarse de los antiguos sistemas de redes de área local (LAN), como 10Base2 o 10Base5 que utilizaban cables coaxiales, y especialmente diferenciarse de 10Base36, que realmente utilizaba el mismo tipo de cable que los sistemas CATV.
A menudo, la idea de una línea compartida se considera como un punto débil de la conexión a Internet por cable. Desde un punto de vista técnico, todas las redes, incluyendo los servicios de línea de abonado digital (DSL), comparten una cantidad fija de ancho de banda entre multitud de usuarios; pero ya que las redes cableadas tienden a abarcar áreas más extensas que los servicios DSL, deben tener más cuidado para asegurar un buen rendimiento en la red.
Una debilidad más significativa de las redes de cable al usar una línea compartida es el riesgo de la pérdida de privacidad, especialmente considerando la disponibilidad de herramientas de hacking para cablemódems. De este problema se encarga el cifrado de datos y otras características de privacidad especificadas en el estándar DOCSIS (Data Over Cable Service Interface Specification), utilizado por la mayoría de cablemódems. Existen dos estándares: el EURODOCSIS (mayormente utilizado en Europa) y el DOCSIS. En las especificaciones DOCSIS, la entrada del módem es un cable RG6, con un conector F.

sábado, 18 de febrero de 2017

Cable-Módem: Proceso de Instalación


Proceso de Instalación


En primera instancia, el cable de internet solicita al CMTS que le envíe los parámetros de configuración necesarios para poder operar en la red de cable (dirección IP y otros datos adicionales) utilizando el protocolo de comunicaciones DHCP. Inmediatamente después, el cablemódem solicita al servidor de hora del día (TOD, por sus siglas en inglés), la fecha y hora exacta, que se utilizará para almacenar los eventos de acceso del suscriptor.
Queda todavía la configuración propia del cablemódem, la cual se lleva a cabo después de las solicitudes DHCP y TOD. El CMTS le envía ciertos parámetros de operación vía TFTP, tras lo cual, el cablemódem realiza un proceso de registro y, en el caso de utilizar la especificación DOCSIS de Privacidad de Línea Base (BP, por sus siglas en inglés) en la red, deberá adquirir la información necesaria de la central y seguir los procedimientos para inicializar el servicio. BP es una especificación de DOCSIS 1.0 que permite el cifrado de los datos transmitidos a través de la red de acceso. El cifrado que utiliza BP sólo se lleva a cabo para la transmisión sobre la red, ya que la información es descifrada al momento de llegar al cable módem o al CMTS. DOCSIS 1.1 integra a esta interfaz de seguridad, además, especificaciones adicionales conocidas como Interfaz Adicional de Privacidad de Línea Base (BPI+, por sus siglas en inglés), las cuales, entre otras cosas, definen un certificado digital para cada cablemódem, que hace posible su autenticación por parte del CMTS. Asumiendo que el proceso de inicialización se ha desarrollado satisfactoriamente, el cable módem está listo para utilizar la red como cualquier otro dispositivo Ethernet sobre los estándares de transmisión admitidos por DOCSIS. El servidor que brinda las respuestas a las peticiones DHCP, TFTP y TOD es conocido como servidor de aprovisionamiento (provisioning), sin embargo, puede haber servidores específicos para cada uno de esos servicios, los cuales se encuentran en una red llamada red de aprovisionamiento.
Uno de los principales problemas de este servicio es la inconsistencia del enlace ascendente, esto es debido a que las frecuencias de "Retorno" están por debajo de los 54 MHz (de 5 a 33 MHz para los sistemas DOCSIS), en estas frecuencias están todo tipo de ruidos eléctricos, por lo tanto es necesaria una constante revisión de las operadoras de redes de cable para evitar el ruido en retorno (Ingress), cuando al CMTS le deja de "responder" el cablemodem este último tiene que repetir todo el proceso de registro. En las redes actuales esto es poco probable, sobre todo en las que usan EURODOCSIS ya que las frecuencias de retorno se sitúan entre 5 y 65 MHz con lo que se pueden evitar la parte más ruidosa del espectro radioeléctrico.
Así mismo, una de las principales ventajas es la baja latencia o Ping, ya que la CMTS introduce mucho menos retardo que los DSLAM de ADSL. Valores típicos para una buena conexión de Cable puede ser entre 5 y 35ms, mientras un buen ADSL puede tener entre 15 y 50 ms. Además las conexiones se basan en Ethernet por lo que se pierde menos caudal útil que en ADSL (con el mismo ancho de banda contratado se consigue más velocidad). Pero la ventaja más importante es que en una red de Cable, el lugar de residencia del cliente no afecta a la velocidad de la conexión, en ADSL o WiMAX la distancia con la central es un impedimento para conseguir velocidades cercanas a 10Mbps, con Cable estas velocidades son fáciles de conseguir en toda la red.
La mayoría de cablemodems pueden configurarse en la dirección 192.168.100.1.

viernes, 17 de febrero de 2017

Cable-Módem: Fabricantes



Fabricantes


  • 3Com
  • ARRIS
  • Cisco Systems
  • D-link
  • Ericsson
  • Motorola Home
  • Netgear
  • Nortel Networks
  • RCA
  • Scientific Atlanta
  • Cable Onda
  • Technicolor (Thomson)
  • Toshiba
  • TP-LINK
  • Ubee Interactive
  • Antel

jueves, 16 de febrero de 2017

Satélite: intruducción


Satélite


El acceso de banda ancha a Internet por satélite proporciona a los usuarios otra alternativa inalámbrica y es ideal para empresas y usuarios que no se pueden suscribir a otros métodos de acceso de banda ancha a Internet, como son las personas que viven en áreas rurales y/o remotas. Durante los últimos años, algunas compañías han desarrollado una línea de servicio que ofrece conexiones a Internet a gran velocidad en lugares rurales y remotos. Usando satélites posicionados en distintas órbitas, es factible ofrecer acceso a Internet por satélite, incluso de doble vía (los satélites mandan y reciben datos), de manera accesible económicamente para la mayoría de los hogares y empresas. Si los sistemas funcionasen tanto de subida como de bajada, no habría necesidad de una línea telefónica para que estos servicios funcionen, pero si no, se requiere una para el canal de retorno. La velocidad de descarga del acceso a Internet por satélite depende de varios factores, como por ejemplo, el proveedor de servicio de Internet por satélite, la lí- nea visual de consumidor al satélite que está en órbita, el paquete de servicio adquirido, y el clima. Típicamente un usuario puede esperar recibir alrededor de 1 Mbit/s en bajada (down link), y aproximadamente 100 kbit/s en subida (up link). Aunque este tipo de conexión es más lento que muchos servicios de acceso a Internet que usan conexiones CM y DSL, es alrededor de 20 veces más rápido que un módem tradicional.

miércoles, 15 de febrero de 2017

Satélite: V y D


Ventajas y Desventajas


El acceso a Internet por satélite es una alternativa al servicio DSL y al servicio CM, y sobre todo, su mayor ventaja es su capacidad de llegar a áreas donde otras alternativas no pueden alcanzar. Se requiere la línea visual para que una antena parabólica vea el satélite y, en condiciones de tiempo extremas, el servicio puede verse interrumpido o sufrir errores. El costo del equipo de satélite y su instalación es más alto que las otras alternativas, pero a veces los proveedores subvencionan el coste de instalación. Debido a las conexiones de larga distancia a través del satélite, el retraso en la transmisión puede ser mayor que con otras alternativas, lo que no debe causar ningún problema con las aplicaciones actuales de Internet, las cuales son principalmente de datos, aunque sí para la voz o el vídeo

martes, 14 de febrero de 2017

3G: Introducción


3G


3G es la abreviación de tercera generación de transmisión de voz y datos a través de telefonía móvil mediante UMTS (Universal Mobile Telecommunications System o servicio universal de telecomunicaciones móviles).
Los servicios asociados con la tercera generación proporcionan la posibilidad de transferir voz y datos no-voz (como la descarga de programas, intercambio de correos electrónicos, y mensajería instantánea).
Aunque esta tecnología estaba orientada a la telefonía móvil, desde hace unos años las operadoras de telefonía móvil ofrecen servicios exclusivos de conexión a Internet mediante módem USB, sin necesidad de adquirir un teléfono móvil, por lo que cualquier computadora puede disponer de acceso a Internet. Existen otros dispositivos como algunos ultraportátiles (netbooks) y tabletas que incorporan el módem integrado en el propio equipo. En todos los casos requieren de una tarjeta SIM para su uso, aunque el uso del número de teléfono móvil asociado a la tarjeta para realizar o recibir llamadas pueda estar bloqueado o estar asociado a un número con contrato 3G.
La mayoría de móviles 3G soportan su uso como módem USB (soportado por todos los smartphones con Android y con iOS) y algunos permiten su uso vía Wi-Fi o Bluetooth.

lunes, 13 de febrero de 2017

3G: Evolución


Evolución


Las redes 2G se construyeron principalmente para transmisiones de voz y la transmisión de datos era lenta. Dados los cambios rápidos en las expectativas de los usuarios, no cumplen las necesidades inalámbricas de la actualidad. La evolución del 2G al 3G puede subdividirse en las siguientes fases:
  • De 2G a 2.5G
  • De 2.5G a 2.75G
  • De 2.75G a 3G

De 2G a 2.5G (GPRS)

El primer gran paso en la evolución al 2G ocurrió con la entrada del Servicio General de Paquetes vía Radio (GPRS - General Packet Radio Service). Los servicios de los móviles relacionados con el GPRS se convirtieron en 2.5G.
El GPRS podía dar velocidad de datos desde 56 kbit/s hasta 114 kbit/s. Puede usarse para servicios como el acceso al protocolo de aplicaciones inalámbricas (WAP - Wireless Application Protocol), servicio de mensajes cortos (SMS - Short Messaging Service), sistema de mensajería multimedia (MMS - Multimedia Messaging Service), y para servicios de comunicación por Internet como el email y el acceso a la web. La transmisión de datos GPRS es normalmente cobrada por cada megabyte transferido, mientras que la comunicación de datos vía conmutación de circuitos tradicional es facturada por minuto de tiempo de conexión, independientemente de si el usuario está realmente usando la capacidad o si está parado.
El GPRS es una gran opción para el servicio de intercambio de paquetes, al contrario que el intercambio de circuitos, donde una cierta calidad de servicio (QoS) está garantizada durante la conexión para los no usuarios de móvil. Proporciona cierta velocidad en la transferencia de datos, mediante el uso de canales no usados del acceso múltiple por división de tiempo (TDMA). Al principio se pensó en extender el GPRS para que diera cobertura a otros estándares, pero en vez de eso esas redes están convirtiéndose para usar el estándar GSM, de manera que el GSM es el único tipo de red en la que se usa GPRS. El GPRS está integrado en el lanzamiento GSM 97 y en nuevos lanzamientos. Originariamente fue estandarizado por el Instituto Europeo de Normas de Telecomunicaciones (ETSI), pero ahora lo está por el 3GPP.

Desde el punto de vista de la arquitecturas de estas redes, podemos notar un importante cambio con la incorporación de este nuevo "Core" de GPRS, como se muestra en la imagen.

domingo, 12 de febrero de 2017

3G: V y D

Ventajas

  • Transmisión de voz con calidad equiparable a la de las redes fijas.
  • Mayor velocidad de conexión, ante caídas de señal.
Todo esto hace que esta tecnología sea ideal para prestar diversos servicios multimedia móviles.

Desventajas

  • Aparición del efecto conocido como «respiración celular», según el cual, a medida que aumenta la carga de tráfico en un sector (o celda), el sistema va disminuyendo la potencia de emisión, o lo que es lo mismo, va reduciendo el alcance de cobertura de la celda, pudiéndose llegar a generar zonas de "sombra" (sin cobertura), entre celdas adyacentes.

viernes, 10 de febrero de 2017

WIMAX: Introducción


Introducción


WiMAX, siglas de Worldwide Interoperability for Microwave Access (interoperabilidad mundial para acceso por microondas), es una norma de transmisión de datos que utiliza las ondas de radio en las frecuencias de 2,5 a 5,8 GHz y puede tener una cobertura de hasta 50 km.
Es una tecnología dentro de las conocidas como tecnologías de última milla, también conocidas como bucle local que permite la recepción de datos por microondas y retransmisión por ondas de radio. El estándar que define esta tecnología es el IEEE 802.16MAN. Una de sus ventajas es dar servicios de banda ancha en zonas donde el despliegue de cable o fibra por la baja densidad de población presenta unos costos por usuario muy elevados (zonas rurales).
El único organismo habilitado para certificar el cumplimiento del estándar y la interoperabilidad entre equipamiento de distintos fabricantes es el Wimax Forum: todo equipamiento que no cuente con esta certificación, no puede garantizar su interoperabilidad con otros productos.
Existe otro tipo de equipamiento (no estándar) que utiliza frecuencia libre de licencia de 5,4 GHz, todos ellos para acceso fijo. Si bien en este caso se trata de equipamiento que en algunos casos también es interoperativo, entre distintos fabricantes (Pre Wimax, incluso 802.11a).
Existen planes para desarrollar perfiles de certificación y de interoperabilidad para equipos que cumplan el estándar IEEE 802.16e (lo que posibilitará movilidad), así como una solución completa para la estructura de red que integre tanto el acceso fijo como el móvil. Se prevé el desarrollo de perfiles para entorno móvil en las frecuencias con licencia en 2,3 y 2,5 GHz.
Actualmente se recogen dentro del estándar 802.16. Existen dos variantes:
  • Uno de acceso fijo (802.16d), en el que se establece un enlace radio entre la estación base y un equipo de usuario situado en el domicilio del usuario. Para el entorno fijo, las velocidades teóricas máximas que se pueden obtener son de 70 Mbit/s con una frecuencia de 20 MHz. Sin embargo, en entornos reales se han conseguido velocidades de 20 Mbit/s con radios de célula de hasta 6 km, ancho de banda que es compartido por todos los usuarios de la célula.
  • Otro de movilidad completa (802.16e), que permite el desplazamiento del usuario de un modo similar al que se puede dar en GSM/UMTS, el móvil, aún no se encuentra desarrollado y actualmente compite con las tecnologías LTE (basadas en femtocélulas, conectadas mediante cable), por ser la alternativa para las operadoras de telecomunicaciones que apuestan por los servicios en movilidad, este estándar, en su variante «no licenciado», compite con el WiFi IEEE 802.11n, ya que la mayoría de los portátiles y dispositivos móviles, empiezan a estar dotados de este tipo de conectividad.

jueves, 9 de febrero de 2017

WIMAX: Usos


Usos


El ancho de banda y rango del WiMAX lo hacen adecuado para las siguientes aplicaciones potenciales:
  • Proporcionar conectividad portátil de banda ancha móvil a través de ciudades y países por medio de una variedad de dispositivos.
  • Proporcionar una alternativa inalámbrica al cable y línea de abonado digital (DSL) de "última milla" de acceso de banda ancha.
  • Proporcionar datos, telecomunicaciones (VoIP) y servicios de IPTV (triple play).
  • Proporcionar una fuente de conexión a Internet como parte de un plan de continuidad del negocio.
  • Para redes inteligentes y medición.

Acceso a Internet

WiMAX puede proporcionar en el hogar o acceso a Internet móvil a través de las ciudades o países enteros. En muchos casos, esto ha dado lugar a la competencia en los mercados, que por lo general sólo tenían acceso a través de un DSL titular existente (o similar) del operador. Además, debido a los costos relativamente bajos asociados con el despliegue de una red WiMAX (en comparación con 3G, HSDPA, xDSL, HFC o FTTx), ahora es económicamente viable para proporcionar la última milla de acceso a Internet de banda ancha en lugares remotos.

Backhaul

WiMAX móvil era un candidato de reemplazo para las tecnologías de telefonía celular, tales como GSM y CDMA, o se puede utilizar como una plantilla para aumentar la capacidad. WiMAX fijo también se considera como una tecnología de backhaul inalámbrico para 2G, 3G y las redes 4G en los países desarrollados y en desarrollo.
En América del Norte, backhaul para las operaciones urbanas se proporciona normalmente a través de una o más conexiones de las líneas de hilo de cobre, mientras que las operaciones celulares remotos a veces backhaul a través de satélite. En otras regiones, backhaul urbana y rural se suele realizar mediante enlaces de microondas (la excepción a esto se da cuando la red es operada por un operador tradicional con fácil acceso a la red de cobre). WiMAX tiene requisitos de ancho de banda de red de retorno más sustanciales que las aplicaciones heredadas celulares. En consecuencia, el uso de backhaul de microondas inalámbrica está en aumento en América del Norte y se están actualizando enlaces de backhaul de microondas existentes en todas las regiones. Las capacidades de entre 34 Mbit/s y 1 Gbit/s se están desplegando rutinariamente con latencias del orden de 1 ms.
En muchos casos, los operadores están agregando sitios que utilizan la tecnología inalámbrica y luego presentan el tráfico en las redes de fibra cuando sea conveniente. WiMAX en esta solicitud compite con microondas, E -line y la simple extensión de la red de fibra en sí.

Triple-play

WiMAX soporta directamente las tecnologías que hacen posible ofertas de servicios triple play (tales como Calidad de Servicio y multidifusión). Estos son inherentes al estándar WiMAX más que una mera adición como Carrier Ethernet es a Ethernet.
El 7 de mayo de 2008 en los Estados Unidos, Sprint Nextel, Google, Intel, Comcast, Bright House y Time Warner anunciaron una puesta en común de un espectro de promedio 120 MHz y una fusión con Clearwire para comercializar el servicio. La nueva compañía espera beneficiarse de las ofertas de servicios combinados y recursos de red como un trampolín para superar a sus competidores. Las compañías de cable ofrecerán los servicios de medios de comunicación a otros socios, mientras ganan acceso a la red inalámbrica como un operador de red virtual móvil para ofrecer servicios de triple play.
Algunos analistas dudaron que este acuerdo fuese a funcionar: A pesar de que la convergencia fijo-móvil ha sido un factor reconocido en la industria, los intentos anteriores para formar alianzas entre las compañías inalámbricas y de cable no han logrado conducir a importantes beneficios para los participantes. Otros analistas señalan que a medida que la tecnología inalámbrica avanza hacia un mayor ancho de banda, inevitablemente competirá más directamente con el cable y el DSL, inspirando a los competidores a colaborar. Además, a medida que las redes inalámbricas de banda ancha crecen más densas y los hábitos de uso cambian, la necesidad de un mayor backhaul y de un servicio de medios de comunicación se acelerará, por lo que se espera que la oportunidad de aprovechar los activos de cable aumente.

miércoles, 8 de febrero de 2017

WIMAX: Conexiones


Conexiones


Los dispositivos que proporcionan conectividad a una red WiMAX se conocen como estaciones de abonado (subscriber stations o SS).
Las unidades portátiles incluyen teléfonos móviles (similares a los smartphones), periféricos de PC (tarjetas de PC o dispositivos USB) y los dispositivos integrados en los ordenadores portátiles, que ahora están disponibles para Wi-Fi. Además, se pone mucho énfasis por los operadores en dispositivos electrónicos de consumo tales como consolas de juego, reproductores de MP3 y dispositivos similares. WiMAX es más similar a Wi-Fi que a otras tecnologías celulares 3Gs.
El sitio web del Foro WiMAX proporciona una lista de dispositivos certificados. Sin embargo, esta no es una lista completa de módulos certificados, ya que hay dispositivos integrados en ordenadores portátiles, MID (mobile internet devices: dispositivos móviles para internet) y otros dispositivos etiquetados privados.

Gateways

Los dispositivos gateway (puerta de enlace) WiMAX están disponibles tanto en versiones de interior como de exterior de varios fabricantes. Muchas de las puertas de enlace WiMAX que se ofrecen por fabricantes como Vecima Networks, Alvarion, Albentia Systems, Airspan, ZyXEL, ZTE, Huawei y Motorola, son unidades interiores (indoor, en inglés) autoinstalables. Estos dispositivos suelen situarse cerca de la ventana del cliente con la mejor señal y proporcionan:
  • Un sistema integrado de punto de acceso Wi-Fi para proporcionar la conectividad a Internet WiMAX a los múltiples dispositivos de toda la casa o negocio.
  • Puertos Ethernet para conectar directamente a un ordenador o DVR.
  • Una o dos tomas para teléfonos analógicos de línea fija y así aprovechar VoIP.
Las pasarelas interiores son convenientes, pero las pérdidas de radio significan que el abonado deba estar significativamente más cerca de la estación base WiMAX que con las unidades externas instaladas profesionalmente.
Las unidades exteriores (outdoor) son aproximadamente del tamaño de un ordenador portátil y su instalación es comparable a la instalación de una antena de televisión. Una unidad exterior direccional de alta ganancia generalmente resultará en un gran incremento de la distancia y del rendimiento pero con la obvia pérdida de movilidad práctica de la unidad. La antena exterior es de fácil instalación (indicando al cliente con LED la fuerza de la señal recibida), no existe la necesidad de llamar a un instalador para el montaje en la fachada o techo del edificio.
Los dispositivos Lightning Protection Unit (PTP-LPU) son unas defensas para los PTP de radio, para protegerlos de los efectos perjudiciales de los aumentos repentinos en la electricidad inducidos por la actividad electromagnética (rayo).

martes, 7 de febrero de 2017

WIMAX: Características


Características


  • Distancias de hasta 80 kilómetros, con antenas muy direccionales y de alta ganancia.
  • Velocidades de hasta 75 Mbps, 35+35 Mbps, siempre que el espectro esté completamente limpio.
  • Facilidades para añadir más canales, dependiendo de la regulación de cada país.
  • Anchos de banda configurables y no cerrados, sujetos a la relación de espectro.
  • Permite dividir el canal de comunicación en pequeñas subportadoras (dos tipos: guardias y datos).

lunes, 6 de febrero de 2017

FTTH: Introducción


Introducción



La tecnología de telecomunicaciones FTTH (del inglés Fiber To The Home), también conocida como fibra hasta la casa o fibra hasta el hogar, enmarcada dentro de las tecnologías FTTx, se basa en la utilización de cables de fibra óptica y sistemas de distribución ópticos adaptados a esta tecnología para la distribución de servicios avanzados, como el Triple Play: telefonía, Internet de banda ancha y televisión, a los hogares y negocios de los abonados.
La implantación de esta tecnología está tomando fuerza, especialmente en países como España, Estados Unidos, Colombia, Uruguay, Japón y países de Europa, donde muchos operadores reducen la promoción de servicios ADSL en beneficio de la fibra óptica con el objetivo de proponer servicios muy atractivos de banda ancha para el usuario (música, vídeos, fotos, etc.)

domingo, 5 de febrero de 2017

FTTH: Arquitectura


Arquitectura



La tecnología FTTH propone utilizar la fibra óptica hasta la casa del usuario o cliente de fibra (usuario final). La red de acceso entre el abonado y el último nodo de distribución puede realizarse con una o dos fibras ópticas dedicadas a cada usuario (una conexión punto-punto que resulta en una topología en estrella) o una red óptica pasiva (del inglés Passive Optical Network, PON) que usa una estructura arborescente con una fibra en el lado de la red y varias fibras en el lado usuario.
  • Las arquitecturas basadas en divisores ópticos pasivos se definen como un sistema que no tiene elementos electrónicos activos en el bucle y cuyo elemento principal es el dispositivo divisor de haz (splitter) que, dependiendo de la dirección del haz de luz divide el haz entrante y lo distribuye hacia múltiples fibras o lo combina dentro de una misma fibra. La filosofía de esta arquitectura se basa pues en compartir los costes del segmento óptico entre los diferentes terminales, de forma que se pueda reducir el número de fibras ópticas. Así, por ejemplo, mediante un splitter óptico, una señal de vídeo se puede transmitir desde una fuente a múltiples usuarios.
  • La topología en estrella provee de 1 ó 2 fibras dedicadas a un mismo usuario, proporcionando el mayor ancho de banda pero requiriendo cables con mayor número de fibras ópticas en la central de comunicaciones y un mayor número de emisores láser en los equipos de telecomunicaciones.

sábado, 4 de febrero de 2017

FTTH: Disponibilidad

América del Norte

  • En Estados Unidos destacan la compañía de telecomunicaciones Verizon, con inversiones superiores a los 60.000 millones de dólares hasta 2010, buscando pasar a 14 millones de hogares con FTTH; SBC, con una inversión de 6000 millones de dólares en los próximos 5 años, para pasar a 18 millones de hogares con FTTH; y BellSouth, con una inversión de 3.500 millones de dólares en los próximos 5 años para pasar a 8 millones de hogares conectados.
  • El presidente Barack Obama empezó el programa ConnectHome, Su objetivo es llevar Internet de alta velocidad a 275.000 hogares de pocos recursos, e incluso a una nación tribal, la nación Choctaw. El programa cuenta con la participación de varias tiendas por departamento, incluyendo Best Buy. El proyecto tiene como meta principal aumentar el acceso a la información para muchos niños que solo puede conectarse a la red en sus colegios, creando así una brecha académica con respecto a aquellos niños que tienen conexión en sus hogares.
  • En México, a partir de 2010 se inició la oferta de servicios basados en fibra óptica. Las empresas que ofrecen dicho servicio son:
    • Axtel, que ofrece conexiones simétricas o asimétricas de hasta 200 Mbps en algunas zonas de la Ciudad de México, Guadalajara, Monterrey, Querétaro y San Luis Potosí. En 2013 Axtel lanzó su servicio de TV utilizando una conexión de fibra óptica, llamado Axtel TV.
    • América Móvil, a través de su marca TELMEX (Teléfonos de México). Está realizando la renovación tecnológica de su infraestructura mediante la instalación de fibra FTTH al hogar usando la tecnología GPON carrier ethernet entre sus clientes Infinitum. El 2012, Telmex está instalado servicios de Internet por fibra óptica, reemplazando el servicio de ADSL por zonas. La cobertura todavía es incierta .
    • La empresa de Grupo Salinas, Total Play, antes Enlace TPE, ofrece anchos de banda de hasta 300 Mbps de bajada y hasta 10 Gbit/s (10.000 Mbit/s) en enlaces dedicados y servicios avanzados de datos para corporativos y gobierno, principalmente en la Ciudad de México, Guadalajara, Monterrey y en más de 20 ciudades del país. Eentregando servicios Triple play a clientes finales. Esta empresa fue la primera en ofrecer programas de Televisión en 3D (tres dimensiones).

América Central

  • En Nicaragua, Xinwei Telecom (bajo su marca Cootel) empezó a brindar servicios de telefonía celular e Internet residencial mediante una instalación de 150 kilómetros de fibra óptica y con 500 estaciones base, ofreciendo velocidades desde 2 hasta 20Mbps simétricos; por el momento (abril 2016) únicamente con cobertura en Managua, Ciudad Sandino, Tipitapa y Masaya. Se prevé que en 2017 se ofrezca cobertura en el centro del país y las regiones autónomas del Caribe.

América del Sur

  • En Argentina, desde mediados de 2009, la empresa IPLAN comenzó a ofrecer este servicio en su producto Internet Óptimo, ofreciendo en ese momento planes simétricos de hasta 10 MB (100 Mbps). En el Gran Buenos Aires (Suburbios de Buenos Aires), la empresa Claro está ofreciendo internet y telefonía con este servicio. En la Ciudad autónoma de Buenos Aires desde 2011 la empresa Phonevision brinda FFTH a clientes residenciales.
  • En Brasil, Telefónica Brasil brinda su servicio FTTH principalmente en São Paulo y alrededores, con planes de llegar al millón de clientes de fibra antes de 2015. En Rio de Janeiro y São Paulo, TIM ofrece desde 2011 planes de alta velocidad usando FFTH en conjunto a VDSL. Oi (anteriormente Brasil Telecom) brinda su servicio hasta 200 Mbit/s en las ciudades de Belo Horizonte y Río de Janeiro. GVT brinda su servicio de 100 Mbit/s en 56 localidades dentro de los estados de Rio Grande do Sul, Paraná, Goiás, Santa Catarina, Minas Gerais, Espírito Santo, Bahía y el Distrito Federal.
  • En Chile, desde fines del 2004, la empresa GTD Manquehue ofrece el servicio FTTH de 100 Mbit/s simétricos a comunas de Santiago. A fines del 2013, en el sur de Chile, la empresa Telefónica del Sur ofrece servicios de telefonía, IPTV e internet. Además, Movistar anunció el 2010 el despliegue de este servicio a nivel nacional. Entel anunció que desplegará esta tecnología también.
  • En Colombia, las operadoras estatales UNE EPM y ETB han implementado la opción de FTTH a sus clientes para entregarles velocidades hasta de 50 Mbps para el caso de UNE y hasta 150 Mbps para ETB. Los actuales técnicos instaladores ya se encuentran en la fase de capacitación sobre el manejo de la fibra óptica. Ya se encuentra comercializando en la ciudad de Bogotá en algunos sectores (norte de la ciudad) desde mitad de enero de 2014 y hacia finales de marzo de 2014 comercializara IPTV.
  • En Ecuado, La Empresa Netlife ofrece el servicio de FTTH desde el año de 2010, los planes van desde 10 Mbit/s a 100 Mbit/s en capacidad Internacional, con cobertura en la mayoría de las ciudades del país. La empresa PUNTONET esta por lanzar este servicio a finales del 2013 a más tardar al comienzo del 2014, y la empresa ZENIX - INTERACTIVE lanzo en el mes de agosto este tipo de servicio en el sector sur de la ciudad de Quito. La empresa estatal CNT ofrece el servicio FTTH con velocidades asimétricas desde 4 Mbit/s hasta 25 Mbit/s.
  • En Paraguay, la Compañía Nacional de Telecomunicaciones COPACO desde el año 2010 ofrece servicios de FTTH. Hasta el momento el servicio cubre solamente la capital del país.
  • En Perú, Telmex (ahora fusionada con Claro) inició los trabajos de instalación de fibra óptica a mediados de 2009 en los principales distritos de la capital de ese país. Misticom desplegó la primera red FTTH única dedicada en 2013. Partiendo de la ciudad de Arequipa, la compañía también se está expandiendo en Lima y provincias. Misticom opera una red de 10 Gigabit GPON con velocidades de usuarios finales que van desde 6 Mbit/s a 100 Mbit/s. La compañía ofrece tanto servicios empresariales y residenciales. Misticom es también el primer proveedor de IPTV en el país.
  • En Uruguay, en 2011 la empresa estatal Antel inicio el tendido de fibra óptica en Montevideo y a mediados de 2012 en más de 20 localidades del interior, el plan inicial es que todo el país tenga fibra en el hogar para el año 2014. El 19 de octubre de 2011 el primer hogar fue conectado al servicio de fibra óptica de Antel. A fines del 2014 llega al 40% del total de los hogares conectados a internet. En total en Uruguay, hay más del 72% conectados a Internet y más del 90% de los hogares con fibra pasada los cuáles pasarán a fibra de manera gratuita. Hasta fines del 2014, ha ofrecido conexiones de 28 dólares por 20 Mbps hasta 120 Mbps por 65 dólares. El cambio a la fibra ótpca generalizado al que apostó Antel, generaró un fuerte impacto en las velocidades de conexión, en la actualidad Uruguay es el país con mayor velocidad de bajada y subida en América Latina muy por cerca de EEUU y Canadá. A finales del 2014, Antel anunció el tendido de un cable submarino en asociación con Google, Angola Cables y Algar Telecom de Brasil que unirá a Uruguay, pasando por Santos y Fortaleza, directo con EEUU. aumentando considerablemente la velocidad, obteniendo más independencia de las conexiones internacionales y reduciendo los costos de conexión en 195 millones de dólares.
  • En República Dominicana, la empresa Claro anunció los trabajos de instalación de fibra óptica hacia el hogar, comenzando con los sectores Naco y Serrallés, posteriormente en Piantini a partir del 1 de abril de 2012.
  • En Bolivia, es muy limitada la cobertura de fibra óptica.
  • En Venezuela, la estatal CANTV inició pruebas de implementación de FTTH en julio de 2013 en Caracas, logrando velocidades hasta 20 Mbit/s.

Asia

  • Corea del Sur es el país del mundo con mayor penetración de banda ancha, con un 58 % de implantación en hogares en 2011. El lanzamiento de "lu-Korea vision" pretende posicionar a Corea en la vanguardia mundial cuyas primeras ofertas comerciales de FTTH se han producido ya en abril de 2005.
  • En Japón, donde la tasa de penetración de la banda ancha alcanza ya al 40% de la población, había ya más de 3 millones de hogares conectados a FTTH a mediados de 2005. y las previsiones apuntan a los 30 millones de clientes para 2010, donde compañías destacadas como NTT han anunciado 38 000 millones de euros de inversión con el objetivo de alcanzar esta meta.

Europa

  • En Francia, Free habría anunciado su proyecto de FTTH y ha comprado a Cité Fibre, que ya ofrece fibra óptica hasta casa a una velocidad de 100 Mbit/s y ofreciendo servicios de Triple Play con un despliegue inicial por diferentes distritos de París a través de la compañía Nicominvest, mientras que France Telecom tiene intención de desplegar su propia red de fibra óptica con un potencial mercado para 2008. Aunque en Francia, en 2009, la mayor parte de clientes de redes de banda muy ancha son en FTTB, por Numericable. Los operadores esperan a la legislación sobre la mutualisacion de la fibra antes de hacer más FTTH. En el 2013, Free es un actor marginal en este mercado desarrollado por Orange, SFR Bouygues et Numericable.
  • En Holanda, los habitantes de la ciudad de Nuenen han construido su propia infraestructura de FTTH de 100 Mbit/s simétrica, tratándose de la primera alternativa de este tipo en Europa respecto a los modelos de operadores tradicionales de telecomunicaciones. KPN Telecom se prepara para extender su red de fibra óptica desde los países bajos y Alemania con un mercado potencial de más de 25 millones de clientes.
  • En Reino Unido, la compañía NTL está realizando las pruebas necesarias para poder ofrecer a sus clientes conexiones de 100 Mbit/s a sus clientes mediante el despliegue de una red FTTH por el país.
  • En España, en 2005 el gobierno de Asturias desplegó la primera red de fibra hasta el hogar en la zona de los valles mineros del Principado de Asturias. Una inversión de capital público mediante la cual se pretende lograr una reconversión de las zonas mineras ya deprimidas desde hace años por la decadencia del sector. Se trata del primer proyecto de estas características en España, y se ha creado una empresa pública, el Gestor de Infraestructuras Públicas de Telecomunicación del Principado de Asturias S.A. (GIT), que se encarga de gestionar esta red de FTTH y posibles futuras infraestructuras públicas. Este proyecto se conoce como red asturcón.
El 14 de agosto de 2008 Cablex (Extremeña de Telecomunicaciones por Cable S.L.) tiene su primer cliente con red FTTH tras un despliegue realizado para 2.400 viviendas en Badajoz (Extremadura). Hoy día Cablex ofrece conexiones de 200 Mbps de bajada y 100Mbps de subida a 20.000 viviendas.
Telefónica realizó las primeras pruebas de campo en Pozuelo de Alarcón y Campamento (Madrid), alcanzando velocidades de 50 Mbit/s. Desde el 26 de agosto de 2008, ofrece comercialmente cuatro paquetes Triple play sobre su red FTTH. El 13 de noviembre de 2008, la Comisión del Mercado de las Telecomunicaciones autoriza a Telefónica a comercializar este servicio, tras verificar su correcto funcionamiento. Hoy en día, Telefónica ofrece fibra a 300 Mbits/s en algunas zonas de casi todas las capitales españolas y en algunos otros puntos geográficos estratégicos, realizando acuerdos de despliegue con Jazztel y de uso con Yoigo. Mientras tanto, Vodafone y Orange decidieron unir sus esfuerzos por hacer su propio despliegue. En septiembre de 2013, la compañía FibraCat comienza a ofrecer conexiones de hasta 1000 Mbit/s de descarga con 100 Mbit/s de subida para clientes residenciales de Cataluña, comenzando sus operaciones en Manresa. La Villa de Ermua también se ha unido a las comunicaciones de Internet de alta capacidad a través de fibra óptica. Así pues, desde el 10 de diciembre de 2013 empieza a funcionar la red FTTH neutra que llega a todas las personas y empresas del municipio y alrededores. En Andalucía, en julio de 2014 el operador WI-NET empieza migrando sus redes propias y de franquiciados WiMAX de las provincias Sevilla y Huelva a la nueva tecnología basada en fibra hasta el hogar FTTH, ofreciendo conexiones de 100 Mbps como plan básico, así como servicios de Televisión Digital HD sobre fibra óptica. Jazztel ofrece una línea de 200 Mbps simétrica. Según el informe de febrero de 2014 de la CNMC, el parque total de acceso a Banda Ancha en España era de 12.350.000 conexiones, de las que unas 1.453.000 corresponderían a FTTH, con un crecimiento interanual del 151,7%.
  • En Letonia, Lattelecom, tiene previsto instalar redes de FTTH en el 80 % del país, ofreciendo servicios de conexión a internet de 500 Mbit/s, 200 Mbit/s, y 100 Mbit/s. Que ya ofrece esos servicios en las grandes ciudades del país.
  • En Andorra, STA (actualmente reconvertida en Andorra Telecom) realizó las primeras pruebas piloto a finales de 2007, que sirvieron como punto de partida para una cobertura a todos los hogares andorranos para el año 2010. Desde mayo de 2008 está comercializando la FTTH con velocidades de hasta 100 Mbit/s con servicios de Triple play.